
Let G be a graph with n vertices and m edges. A(G) and I denote, respectively, the adjacency matrix of G and an n by n identity matrix. For a graph G, the permanent of matrix (I+A(G)) is called the permanental sum of G. In this paper, we give a relation between the Hosoya index and the permanental sum of G. This implies that the computational complexity of the permanental sum is NP-complete. Furthermore, we characterize the graphs with the minimum permanental sum among all graphs of n vertices and m edges, where n+3≤m≤2n−3.
extremal graph, permanental sum, graph operation, QA1-939, Hosoya index, Mathematics
extremal graph, permanental sum, graph operation, QA1-939, Hosoya index, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
