Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied System Innov...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied System Innovation
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied System Innovation
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised Classification of Human Activity with Hidden Semi-Markov Models

Authors: Francesca Romana Cavallo; Christofer Toumazou; Konstantin Nikolic;

Unsupervised Classification of Human Activity with Hidden Semi-Markov Models

Abstract

The modern sedentary lifestyle is negatively influencing human health, and the current guidelines recommend at least 150 min of moderate activity per week. However, the challenge is how to measure human activity in a practical way. While accelerometers are the most common tools to measure activity, current activity classification methods require calibration studies or labelled datasets—requirements that slow the research progress. Therefore, there is a pressing need to classify and quantify human activity efficiently. In this work, we propose an unsupervised approach to classify activities from accelerometer data using hidden semi-Markov models. We tune and infer the model parameters on accelerometer data from the UK Biobank and select the optimal model based on features used and informativeness of the prior. The best model achieves an average correlation of 0.4 between the inferred activities and the reference ones, with the overall physical activity obtaining a correlation of 0.8. Additionally, to prove the clinical significance of the method, we validate it by performing a linear regression between the inferred activities and anthropometric measures such as BMI and waist circumference. We show that for a sedentary behaviour and total physical activity, the proposed method achieves comparable regression coefficients to the reference labelled dataset. Moreover, the proposed method achieves a good agreement with a labelled dataset for daily time spent in a sedentary behaviour and total physical activity. The unsupervised nature of the method allows for a data-driven classification that does not require calibration studies or labelled datasets and can thus facilitate both clinical research as well as lifestyle recommendations.

Related Organizations
Keywords

activity classification; accelerometer; hidden Markov models; wearable sensors; UK Biobank, accelerometer, UK Biobank, Technology, T57-57.97, Applied mathematics. Quantitative methods, hidden Markov models, wearable sensors, T, activity classification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold