Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2019
Data sources: DOAJ
versions View all 3 versions
addClaim

Aspect-Based Sentiment Analysis Using Aspect Map

Authors: Noh, Yunseok; Park, Seyoung; Park, Seong-Bae;

Aspect-Based Sentiment Analysis Using Aspect Map

Abstract

Aspect-based sentiment analysis (ABSA) is the task of classifying the sentiment of a specific aspect in a text. Because a single text usually has multiple aspects which are expressed independently, ABSA is a crucial task for in-depth opinion mining. A key point of solving ABSA is to align sentiment expressions with their proper target aspect in a text. Thus, many recent neural models have applied attention mechanisms to learning the alignment. However, it is problematic to depend solely on attention mechanisms to achieve this, because most sentiment expressions such as “nice” and “bad” are too general to be aligned with a proper aspect even through an attention mechanism. To solve this problem, this paper proposes a novel convolutional neural network (CNN)-based aspect-level sentiment classification model, which consists of two CNNs. Because sentiment expressions relevant to an aspect usually appear near the aspect expressions of the aspect, the proposed model first finds the aspect expressions for a given aspect and then focuses on the sentiment expressions around the aspect expressions to determine the final sentiment of an aspect. Thus, the first CNN extracts the positional information of aspect expressions for a target aspect and expresses the information as an aspect map. Even if there exist no data with annotations on direct relation between aspects and their expressions, the aspect map can be obtained effectively by learning it in a weakly supervised manner. Then, the second CNN classifies the sentiment of the target aspect in a text using the aspect map. The proposed model is evaluated on SemEval 2016 Task 5 dataset and is compared with several baseline models. According to the experimental results, the proposed model does not only outperform the baseline models but also shows state-of-the-art performance for the dataset.

Related Organizations
Keywords

Technology, QH301-705.5, T, Physics, QC1-999, aspect-based sentiment analysis, class activation mapping, Engineering (General). Civil engineering (General), Chemistry, convolutional neural networks, opinion mining, TA1-2040, Biology (General), QD1-999, weakly supervised learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold