Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integration of Multi-Branch GCNs Enhancing Aspect Sentiment Triplet Extraction

Authors: Xuefeng Shi; Min Hu; Jiawen Deng; Fuji Ren; Piao Shi; Jiaoyun Yang;

Integration of Multi-Branch GCNs Enhancing Aspect Sentiment Triplet Extraction

Abstract

Aspect Sentiment Triplet Extraction (ASTE) is a complex and challenging task in Natural Language Processing (NLP). It aims to extract the triplet of aspect term, opinion term, and their associated sentiment polarity, which is a more fine-grained study in Aspect Based Sentiment Analysis. Furthermore, there have been a large number of approaches being proposed to handle this relevant task. However, existing methods for ASTE suffer from powerless interactions between different sources of textual features, and they usually exert an equal impact on each type of feature, which is quite unreasonable while building contextual representation. Therefore, in this paper, we propose a novel Multi-Branch GCN (MBGCN)-based ASTE model to solve this problem. Specifically, our model first generates the enhanced semantic features via the structure-biased BERT, which takes the position of tokens into the transformation of self-attention. Then, a biaffine attention module is utilized to further obtain the specific semantic feature maps. In addition, to enhance the dependency among words in the sentence, four types of linguistic relations are defined, namely part-of-speech combination, syntactic dependency type, tree-based distance, and relative position distance of each word pair, which are further embedded as adjacent matrices. Then, the widely used Graph Convolutional Network (GCN) module is utilized to complete the work of integrating the semantic feature and linguistic feature, which is operated on four types of dependency relations repeatedly. Additionally, an effective refining strategy is employed to detect whether word pairs match or not, which is conducted after the operation of each branch GCN. At last, a shallow interaction layer is designed to achieve the final textual representation by fusing the four branch features with different weights. To validate the effectiveness of MBGCNs, extensive experiments have been conducted on four public and available datasets. Furthermore, the results demonstrate the effectiveness and robustness of MBGCNs, which obviously outperform state-of-the-art approaches.

Related Organizations
Keywords

Technology, QH301-705.5, T, Physics, QC1-999, ASTE; biaffine attention; structure-biased BERT; GCN; linguistic feature, linguistic feature, Engineering (General). Civil engineering (General), GCN, structure-biased BERT, Chemistry, TA1-2040, Biology (General), ASTE, biaffine attention, QD1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold