
doi: 10.3390/app11114740
As a preliminary study for bearingless permanent magnet slice motor (BPMSM) development, an effective means for BPMSM mechanical structure optimization is proposed here by developing a virtual prototype based on Ansoft Maxwell to realize overall performance improvements. First, the sensitivity evaluation index of the candidate mechanical structural parameters for individual BPMSM performance is constructed for selection. Orthogonal tests are performed to determine the dominant mechanical structural parameters to be optimized by utilizing monitored data based on Ansoft Maxwell. A linear regression model of the mechanical structural parameters for specific performances is obtained by utilizing the gradient descent method. Then, a multi-structural optimization regression model of the selected dominant mechanical structural parameters for overall performance is established using an analytic hierarchy process and solved using a genetic algorithm. The simulation results show that the performance of the optimized BPMSM has been comprehensively improved. Specifically, the passive axial stiffness, passive tilting stiffness, force-current coefficient, and motor efficiency increased by 56.4%, 71.3%, 19.6%, and 8.7%, respectively.
Technology, QH301-705.5, T, Physics, QC1-999, sensitivity, Engineering (General). Civil engineering (General), bearingless permanent magnet slice motor, Chemistry, genetic algorithm, multi-structural optimization, TA1-2040, Biology (General), QD1-999, analytic hierarchy process
Technology, QH301-705.5, T, Physics, QC1-999, sensitivity, Engineering (General). Civil engineering (General), bearingless permanent magnet slice motor, Chemistry, genetic algorithm, multi-structural optimization, TA1-2040, Biology (General), QD1-999, analytic hierarchy process
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
