
This paper proposes a modified glideslope guidance method that optimizes a hybrid multiobjective of bearing-only navigation error and fuel consumption. The traditional glideslope guidance fixes uniform maneuver intervals and the initial approach velocity as a predetermined value, making this approach inflexible. In this paper, the maneuver intervals and the initial approach velocity were used as optimization variables, and a hybrid cost function was designed. The tradeoff between the two objectives was analyzed with a bearing-only navigation simulation conducted to reveal the navigation performance following different resulting trajectories. The result showed that the optimal scheduled times of maneuvers remained relatively stable under different tradeoff weights, while a strong correlation between the optimal initial approach velocity and the tradeoff weight was revealed. Therefore, when the optimization has to be solved several times online with different tradeoff weights, the initial approach velocity can be the only optimization variable, leaving the scheduled times of maneuvers fixed in the optimal values achieved offline. These findings provide a potential reference for far-approach trajectory design of bearing-only navigation.
far approach to small celestial bodies, bearing-only navigation, multipulse glideslope, guidance optimization, TL1-4050, guidance optimization; multipulse glideslope; far approach to small celestial bodies; bearing-only navigation, Motor vehicles. Aeronautics. Astronautics
far approach to small celestial bodies, bearing-only navigation, multipulse glideslope, guidance optimization, TL1-4050, guidance optimization; multipulse glideslope; far approach to small celestial bodies; bearing-only navigation, Motor vehicles. Aeronautics. Astronautics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
