
Alexithymia is a personality trait characterized by difficulties in identifying, describing, and communicating one's emotions. The aim of the present study is to examine the usefulness of a typological approach considering the interaction between distinct alexithymic features within a population of high-alexithymic German adults (N = 217). Latent profile analysis (LPA) was employed to test for possible underlying profiles. A 3-profile solution showed the best fit: The profiles can be described as (1) "low": lower load on all facets of alexithymia, (2) "mixed": specific problems on identifying emotions, and (3) "high": higher load on all facets of alexithymia. Moreover, this study tested how these profiles differed in psychological distress. "Mixed" profile, with specific problems on identifying emotions showed the highest levels of psychological distress. The present study suggests the importance of a specific combination of alexithymic features, rather than total alexithymia scores, as a risk factor for psychological distress.
subtypes, TAS-20, SCL-90-R, BF1-990, psychological distress, latent profile analysis, Psychology, alexithymia, BVAQ
subtypes, TAS-20, SCL-90-R, BF1-990, psychological distress, latent profile analysis, Psychology, alexithymia, BVAQ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
