
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The molecular mechanisms of modern inhaled anesthetics are still poorly understood although they are widely used in clinical settings. Considerable evidence supports effects on membrane proteins including ligand- and voltage-gated ion channels of excitable cells. Na(+) channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetic effects on central nervous system depression. Inhibition of presynaptic Na(+) channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic end points: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na(+) currents by volatile anesthetics at high concentrations. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na(+) channel isoforms implicated inhibition of presynaptic Na(+) channels in anesthetic actions at clinical concentrations. Volatile anesthetics reduce peak Na(+) current (I(Na)) and shift the voltage of half-maximal steady-state inactivation (h(∞)) toward more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed, together with enhanced use-dependent block during pulse train protocols. These effects can depress presynaptic excitability, depolarization and Ca(2+) entry, and ultimately reduce transmitter release. This reduction in transmitter release is more potent for glutamatergic compared to GABAergic terminals. Involvement of Na(+) channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na(+) channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na(+) channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na(+) channels by volatile anesthetics is involved in mediating some of their effects.
Pharmacology, presynaptic, Isoflurane, anesthetic mechanism, volatile anesthetics, Therapeutics. Pharmacology, RM1-950, sodium channels, Presynaptic, Sodium Channels
Pharmacology, presynaptic, Isoflurane, anesthetic mechanism, volatile anesthetics, Therapeutics. Pharmacology, RM1-950, sodium channels, Presynaptic, Sodium Channels
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
