Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Integra...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Integrative Neuroscience
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Integrative Neuroscience
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Integrative Neuroscience
Article . 2014 . Peer-reviewed
Data sources: Frontiers
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The mechanism of dishabituation

Authors: Steiner, Genevieve Z. (R18023); Barry, Robert J.;

The mechanism of dishabituation

Abstract

The dual-process theory of habituation attributes dishabituation, an increase in responding to a habituated stimulus after an interpolated deviant, to sensitization, a change in arousal. Our previous investigations into elicitation and habituation of the electrodermal orienting reflex (OR) showed that dishabituation is independent of sensitization for indifferent stimuli, arguing against dual-process theory's explanation. However, this could not be tested for significant stimuli in that study, because sensitization was confounded with incomplete resolution of the preceding OR. This study aimed to clarify the mechanism of dishabituation for significant stimuli by extending the stimulus onset asynchrony (SOA) beyond the time required for the phasic response to resolve. Participants completed an auditory dishabituation task with a random SOA of 13-15 s while their electrodermal activity was recorded. The stimulus sequence was 10 standards, 1 deviant, 2-4 standards; counterbalanced innocuous tones. Two counterbalanced conditions were used: silently count all stimuli (significant) and no task (indifferent). Skin conductance responses (SCRs) and pre-stimulus skin conductance levels (SCLs) both decremented over trials 1-10. In both conditions, SCRs showed response recovery and dishabituation, indicating habituation, and post-deviant SCL sensitization was apparent. Across all trials, phasic ORs were dependent on the pre-stimulus SCL (arousal level); this did not differ with condition. Importantly, dishabituation was independent of sensitization for both conditions. Findings indicate that sensitization, the change in state, is a process separate from phasic response resolution, and that arousal consistently predicts OR magnitude, including the dishabituation response. This argues against dual-process theory's explanation, and instead suggests that dishabituation is a disruption of the habituation process, with magnitude determined by the current arousal level.

Country
Australia
Related Organizations
Keywords

orienting reflex, Counting, 150, mechanism, Neurosciences. Biological psychiatry. Neuropsychiatry, Social and Behavioral Sciences, habituation, electrodermal activity, sensitization, Education, 920111 - Nervous System and Disorders, Electrodermal activity, 110905 - Peripheral Nervous System, sensitisation., counting, Neurology. Diseases of the nervous system, RC346-429, habituation (neuropsychology), dishabituation, RC321-571, Neuroscience

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Green
gold