Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Neuroro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Neurorobotics
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Neurorobotics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Neurorobotics
Article . 2019
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning

Authors: Shota Ohnishi; Eiji Uchibe; Yotaro Yamaguchi; Kosuke Nakanishi; Yuji Yasui; Shin Ishii; Shin Ishii;

Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning

Abstract

A deep Q network (DQN) (Mnih et al., 2013) is an extension of Q learning, which is a typical deep reinforcement learning method. In DQN, a Q function expresses all action values under all states, and it is approximated using a convolutional neural network. Using the approximated Q function, an optimal policy can be derived. In DQN, a target network, which calculates a target value and is updated by the Q function at regular intervals, is introduced to stabilize the learning process. A less frequent updates of the target network would result in a more stable learning process. However, because the target value is not propagated unless the target network is updated, DQN usually requires a large number of samples. In this study, we proposed Constrained DQN that uses the difference between the outputs of the Q function and the target network as a constraint on the target value. Constrained DQN updates parameters conservatively when the difference between the outputs of the Q function and the target network is large, and it updates them aggressively when this difference is small. In the proposed method, as learning progresses, the number of times that the constraints are activated decreases. Consequently, the update method gradually approaches conventional Q learning. We found that Constrained DQN converges with a smaller training dataset than in the case of DQN and that it is robust against changes in the update frequency of the target network and settings of a certain parameter of the optimizer. Although Constrained DQN alone does not show better performance in comparison to integrated approaches nor distributed methods, experimental results show that Constrained DQN can be used as an additional components to those methods.

Keywords

regularization, target network, deep reinforcement learning, deep Q network, learning stabilization, Neurosciences. Biological psychiatry. Neuropsychiatry, constrained reinforcement learning, RC321-571, Neuroscience

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 1%
Top 10%
Top 10%
Green
gold