Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Genetic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Other literature type . 2013 . Peer-reviewed
Data sources: Frontiers
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Is human DNA enough?—potential for bacterial DNA

Authors: Sarah Louise Leake;

Is human DNA enough?—potential for bacterial DNA

Abstract

Human identification has played an important role in forensic science for the past two decades and it will continue to do so. However, there are certain types of traces, for example, low quality and low quantity of DNA, often associated with violent crimes, which cannot always be satisfactorily exploited by current techniques. So what is next? Do we try to push these techniques beyond their limit or do we look to something else? I propose turning to a new source of information— bacterial DNA. I do not suggest bacterial DNA analysis will replace standard DNA typing but it would be a complimentary technique for when the latter provides only limited information (Leake, 2012). Since the 1980’s, there has been a considerable increase in the capacity of human DNA analyses to contribute to the process of individualization. With advances in technology two new breakthroughs, in the late 80’s to early 90’s, changed the techniques used for DNA analysis. The first, a new marker for DNA analysis, the microsatellite or Short Tandem Repeat (Jeffreys et al., 1985). The second, a new method of visualization based on fluorescent labeling which when combined with PCR increased the sensitivity of the technique enabling low quantities of DNA to be analyzed (Fregeau and Fourney, 1993). Improved sensitivity extends the methods to traces with low template level material and traces containing degraded DNA. A number of techniques exist to help exploit such traces; Y-STRs, mini-STRs, and mitochondrial DNA (mtDNA). The first two exploit nuclear DNA so are subject to the same constraints as standard DNA typing. mtDNA is found in much higher quantities than nuclear DNA and is thus, well adapted for analyzing degraded DNA. However, it is different to nuclear DNA in that results are less informative for a particular person; instead, they typically characterize a maternal lineage. Therefore, it is of continuing interest to think about novel ways to exploit forensic samples to compliment current methods. I propose the analysis of parts of the human microbiome, in particular saliva. This will be accompanied by challenges in interpretation, such as the combination of evidence (i.e., standard DNA typing with results of microbiome analyses), which thus, represents a field that should receive further attention (Juchli et al., 2012). What is the so-called human microbiome? In brief, the human microbiome describes all the microbiomes found within and across the human body (Turnbaugh et al., 2007). Each distinct area of the human body (for example, the oral cavity, forearm, hand, and gut) have their own microbiome. Each microbiome consists of different combinations of bacteria with, in theory, each person having a slightly different ratio or combination of bacteria at each site. Fierer et al. (2010) investigated the use of bacteria for human identification concentrating on the potential of analyzing skin bacterial communities. They suggested that the bacteria left behind after touching a surface could be used to trace it back to its source. The analysis of the whole salivary microbiome has not yet been applied to forensic science. However, Kennedy et al. (2012) investigated the microbial analysis of bite marks, specifically streptococcal DNA, in order to compare bacteria in the bite mark to those of a potential source. They concluded that this was a feasible comparative analysis and the results could also provide valuable information when the perpetrator’s DNA cannot be recovered. Saliva is commonly found at crime scenes and is often transferred from the perpetrator to the victim, especially in sexual assault cases. Due to a number of factors including environmental, poor DNA transfer and the major contributor masking the minor contributor, human DNA analysis does not always work, demonstrating the need for an alternative technique. One of the major advantages of bacteria is that they are more resistant to environmental factors than human DNA and so could persist longer on a surface. Another potential advantage concerns mixtures. Human DNA is the same regardless where it comes from,i.e., skin or saliva, and this can cause problems when analyzing mixtures. Whereas, the bacteria found in saliva is different from bacteria found on skin (Costello et al., 2009). Thus, it is reasonable to think that it could be possible to extract the salivary microbiome profile of one person from the skin microbiome profile of another. However, if a mixture was formed from the same trace type then mixture analysis will clearly increase the complexity of the evaluative task. A combination of PCR and high throughput sequencing is used to analyze these types of traces. Specifically, a target sequence is chosen which can, after analysis, be used to distinguish as many bacterial taxa as possible. The most commonly used target is 16SrRNA, however, a combination of targets may produce more detail and hence a more accurate picture of the microbiome. After the sequences have been quality filtered and then clustered together the final dataset produced is in the form of a table containing bacterial species abundance for each trace or target (if more than one target is analyzed) and the taxa name. This table can then be used for all downstream analysis/interpretation. One drawback of high throughput sequencing

Keywords

saliva, Human Identification, Genetics, human Identification, microbiome, QH426-470, Saliva, forensic, interpretation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average
Green
gold