
Adult stem cell therapies are increasingly prevalent for the treatment of damaged or diseased tissues, but most of the improvements observed to date are attributed to the ability of stem cells to produce paracrine factors that have a trophic effect on existing tissue cells, improving their functional capacity. It is now clear that this ability to produce trophic factors is a normal and necessary function for some stem cell populations. In vivo adult stem cells are thought to self-renew due to local signals from the microenvironment where they live, the niche. Several niches have now been identified which harbor multiple stem cell populations. In three of these niches - the Drosophila testis, the bulge of the mammalian hair follicle, and the mammalian bone marrow - one type of stem cell has been found to produce factors that contribute to the maintenance of a second stem cell population in the shared niche. In this review, I will examine the architecture of these three niches and discuss the molecular signals involved. Together, these examples establish a new paradigm for stem cell behavior, that stem cells can promote the maintenance of other stem cells.
germline stem cell, Stem Cell Therapy, QH426-470, Hematopoietic Stem Cells, stem cell therapy, hematopoietic stem cells, drosophila stem cells, hair follicle stem cell, Drosophila stem cells, self-renewal pathways, Genetics, stem cell niche, Stem Cell Niche
germline stem cell, Stem Cell Therapy, QH426-470, Hematopoietic Stem Cells, stem cell therapy, hematopoietic stem cells, drosophila stem cells, hair follicle stem cell, Drosophila stem cells, self-renewal pathways, Genetics, stem cell niche, Stem Cell Niche
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
