Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Ecology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Ecology and Evolution
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Ecology and Evolution
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Halophilic Algal Communities in Biological Soil Crusts Isolated From Potash Tailings Pile Areas

Authors: Veronika Sommer; Ulf Karsten; Karin Glaser;
APC: 1,912.24 EUR

Halophilic Algal Communities in Biological Soil Crusts Isolated From Potash Tailings Pile Areas

Abstract

Mining potash for fertilizer produces vast amounts of highly saline waste that is deposited in potash tailings piles. Rainfall washes the salts out, affecting the surrounding ecosystems. Only salt-tolerant organisms occur close to the piles, since other species cannot survive in these hypersaline conditions. Halophytic plant communities around tailings piles have been well investigated. However, studies exploring the biodiversity of the space behind the vegetation line that separates suitable salinities for plant growth from hostile conditions are rare. On top of the tailings piles, only micro-organisms thrive. This study, for the first time, explored the microalgae and cyanobacteria in biocrusts that inhabit potash tailings pile areas between the vegetation line and the pile body. Two biocrust types were studied: young biocrusts at or close to the tailings piles, and established biocrusts situated in the near surroundings. The estimated abundance of green algae, cyanobacteria and diatoms was studied using a direct microscopy approach, followed by the isolation and establishment of unialgal strains and morphological species determinations. Soil environmental characteristics were analyzed. Soil samples showed ECSat (electrical conductivity) values that drastically exceeded the scales commonly used to describe soil salinity, indicating extremely saline conditions. Indeed, the isolate composition was shaped by soil salinity parameters. Soil ECSat of young biocrusts tended to be higher than in established biocrusts, and filamentous green algae were most abundant. In contrast, established biocrusts tended to have a lower ECSat and were mostly dominated by filamentous cyanobacteria. Algal and cyanobacteria isolate composition differed significantly in young and established biocrusts, although the species number did not. Some of the salt-tolerant algal strains are assumed to be candidates for the formation of artificial biocrusts on the surface of the tailings. Attempts to “green” the piles by the establishment of higher plants to trap rainwater and therefore reduce the salt-output are difficult to apply. Plants require a thick layer of substrate to reduce the salinity, and the substrate easily erodes on the steep slopes. However, microalgae isolated from potash tailings pile areas seem promising, since they can survive on a thinner substrate layer and are already adapted to these hypersaline conditions.

Keywords

salt tolerance, Ecology, Evolution, biocrusts, secondary salinization, green algae, cyanobacteria, diatoms, QH359-425, QH540-549.5

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold