
Hotspots of endemic biodiversity, tropical cloud forests teem with ecosystem services such as drinking water, food, building materials, and carbon sequestration. Unfortunately, already threatened by climate change, the cloud forests in our study area are being further endangered during the Covid pandemic. These forests in northern Ecuador are being razed by city dwellers building country homes to escape the Covid virus, as well as by illegal miners desperate for money. Between August 2019 and July 2021, our study area of 52 square kilometers lost 1.17% of its tree cover. We base this estimate on simulations from the predictive model we built using Artificial Intelligence, satellite images, and cloud technology. When simulating tree cover, this model achieved an accuracy between 96 and 100 percent. To train the model, we developed a visual and interactive application to rapidly annotate satellite image pixels with land use and land cover classes. We codified our algorithms in an R package—loRax—that researchers, environmental organizations, and governmental agencies can readily deploy to monitor forest loss all over the world.
artificial intelligence, cloud forest, Environmental sciences, machine learning, GE1-350, Sentinel-2, random forest, cloud technology
artificial intelligence, cloud forest, Environmental sciences, machine learning, GE1-350, Sentinel-2, random forest, cloud technology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
