Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Earth S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island (Italy) unrest

Authors: Santina Chiara Stissi; Gilda Currenti; Flavio Cannavò; Rosalba Napoli;

Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island (Italy) unrest

Abstract

Thermal and pore-pressure variations induced by the circulation of hydrothermal-magmatic fluids in porous and permeable media contribute to ground deformation in volcanic areas. Here, we use solutions for the calculation of the displacements induced by pore-pressure and temperature changes for simplified geometry sources embedded in an elastic half-space with homogeneous mechanical and porous properties. The analytical solution for a spherical source is reviewed, and a semi-analytical approach for the calculation of the displacement for a cylindrical source is presented. Both models were used for the inversion of the daily deformation data recorded on Vulcano Island (Italy) during the 2021 unrest. Starting from September 2021, Vulcano Island experienced an increase in gas emission, seismic activity, and edifice inflation. The deformation pattern evolution from September until mid-October 2021 is indicative of a spatially stationary source. The modeling of the persistent and continuous edifice inflation suggests a deformation source located below the La Fossa crater at a depth of approximately 800 m from the ground surface undergoing a volume change of approximately 105 m3, linked to the rise in fluids from a deeper magmatic source. Corroborated by other sources of geophysical and geochemical evidence, the modeling results support that thermo-poro-elastic processes are sufficient to explain the observed displacement without necessarily invoking the migration of magma to shallow levels. Our findings demonstrate that thermo-poro-elastic solutions may help interpret ground deformation and gain insights into the evolution of the hydrothermal systems, providing useful implications for hazard assessment during volcanic crises.

Keywords

cylindrical source, ground deformation, Vulcano Island, volcano monitoring, Science, Q, thermo-poro-elastic effect, genetic inversion algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold