Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Earth S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Earth Science
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Atmospheric recycling of agricultural evapotranspiration in the Tarim Basin

Authors: Kaifang Shi; Kaifang Shi; Tiejian Li; Tiejian Li; Tiejian Li; Jie Zhao; Yang Su; +2 Authors

Atmospheric recycling of agricultural evapotranspiration in the Tarim Basin

Abstract

Precipitation recycling, defined as that precipitation in a region is partially contributed by evapotranspiration from the same region, is the interaction between terrestrial hydrology and atmospheric processes, and plays a crucial role in forming water resources. For agricultural lands, the evapotranspiration of irrigation water alters local climate by reprecipitation in surrounding regions, which can also be analyzed from the viewpoint of precipitation recycling. As the largest endorheic basin in China, the Tarim Basin has strong precipitation recycling contributed by the surrounding mountains, as well as large irrigation areas producing high-quality cotton, which makes it an appropriate study case for the recycling of irrigation water. In this paper, we calculate the water vapor sources of precipitation (WSoP) and the reprecipitation of evapotranspiration (RPoET) in the Tarim Basin by using the Water Accounting Model—Two Layers, analyze their spatial distributions, and find the moisture recycling ratio of the basin as 15.4%. We set up comparative scenarios of evapotranspiration increase by irrigation areas in different locations of the Tarim Basin, and study their difference in reprecipitation and moisture recycling. Results show that the evapotranspiration increase in different locations has a marginal reprecipitation ratio ranging from 8% to 24%, and further boosts the whole basin’s moisture recycling ratio by 0.11%–0.29%. Significant difference among the scenarios proves that the location of irrigation areas affects the reprecipitation of its evapotranspiration, and the optimized moisture recycling can benefit water resource and ecosystem conditions inside the basin. In summary, this work would be useful to provide a practical basis for irrigation planning by considering the land-atmosphere interaction.

Related Organizations
Keywords

Tarim Basin, Water Accounting Model, Science, Q, precipitation recycling, irrigation water, reprecipitation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold