Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Poultry Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Poultry Science
Article . 2015 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Poultry Science
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Poultry Science
Article . 2015
versions View all 2 versions
addClaim

Sexing in guinea fowls (Numida meleagris)

Authors: Iddriss I, Abdul-Rahman; Bawa, Awumbila; Ian A, Jeffcoate; Jane E, Robinson; Frederick Y, Obese;

Sexing in guinea fowls (Numida meleagris)

Abstract

Despite the potentials and contributions of guinea fowls to economic and social life in Ghana, accurate sex identification in these birds is still a major problem. Three hundred and sixty guinea fowls (180 birds per sex) were used in determining a more accurate and farmer friendly sexing technique. The sexing methods explored were vent, biometric, and molecular techniques. Vent sexing was accomplished by measuring phalli in 28 and 32-week-old birds, while biometric sexing involved the measurement of morphometric traits and data analyzed using discriminant function analysis. Molecular sexing was carried out by DNA extraction and subsequent PCR using the 2550F/2718R primer set. Females had a wider (P<0.05) pelvic inlet than male birds from first week of age until the end of the study, while the opposite was true for wattle length. However, wattle length differed (P<0.05) between both sexes after 4 weeks of age. Combining the biometric variables in a discriminant function, males could be distinguished from females with an accuracy of 94%. During molecular sexing, the P2/P8 primer set was not effective in sexing guinea fowls because it amplified a single band in both sexes and in the same manner. The sex of guinea fowls was properly determined using the primer set 2550F/2718R. Females produced 2 bands of 396 bp and 344 bp, while males only produced the larger band. Phallus size in the 2 sexes were distinguishable from 8 weeks of age, with males having longer and thicker (P<0.05) phalli than their female counterparts. Combining the 2 variables in a discriminate function, males and females could be distinguished with 98.3% accuracy. While the molecular method remains the most accurate sexing technique, the biometric method emerged as the most farmer friendly approach to sexing guinea fowls.

Keywords

Male, Sex Determination Analysis, Sex Factors, Animals, Female, DNA, Genitalia, Galliformes, Polymerase Chain Reaction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Average
gold