
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 15910167
Apart from thyroid hormones, as the main hormonal regulators of obligatory thermogenesis, and catecholamines, as major hormonal regulators of facultative thermogenesis, production of heat in homeotherms can also be influenced by steroids. Generally, hormones can influence heat production by regulating the activity of various enzymes of oxidative metabolism, by modulating membrane protein carriers and other membrane or nuclear protein factors. Proton carriers in the inner mitochondrial membrane, known as uncoupling proteins, play the key role in heat dissipation to the detriment of the formation of energy-rich phosphates. In this minireview we have focused on the effects of steroids and thyroid hormones on heat production in brown adipose tissues and in skeletal muscles, with particular respect to their effect on uncoupling protein expression. Apart from hormonal steroids, dehydroepiandrosterone, an important precursor in the metabolic pathway leading to hormonal steroids which possess many, mostly beneficial effects on human health, modulates metabolic pathways which may lead to increased heat production. Recent studies demonstrate that 7-oxo-dehydroepiandrosterone, one of its 7-oxygenated metabolites, is even more effective than dehydroepiandrosterone. Recent findings of various actions of these steroids support the view that they may also participate in modulating thermogenic effects.
Thyroid Hormones, Membrane Proteins, Thermogenesis, Dehydroepiandrosterone, Ion Channels, Mitochondrial Proteins, Adrenal Cortex Hormones, Etiocholanolone, Animals, Humans, Steroids, Carrier Proteins, Gonadal Steroid Hormones, Uncoupling Protein 1
Thyroid Hormones, Membrane Proteins, Thermogenesis, Dehydroepiandrosterone, Ion Channels, Mitochondrial Proteins, Adrenal Cortex Hormones, Etiocholanolone, Animals, Humans, Steroids, Carrier Proteins, Gonadal Steroid Hormones, Uncoupling Protein 1
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
