Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pure Utrecht Univers...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pure Utrecht University
Doctoral thesis . 2021
License: CC BY ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.33540/739...
Doctoral thesis . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Designer materials on demand:

honeycomb semiconductors by lithographic design
Authors: Post, Lambert Christiaan;

Designer materials on demand:

Abstract

Graphene is a one-atom thick layer of carbon which are arranged in a two-dimensional honeycomb symmetry. Although this material holds tremendous electrical properties due to its high charge carrier mobility and electrical conductivity, it cannot be applied directly into classical transistors since it cannot be ‘switched off’. Since the electronic structure of graphene only depends on the nanosymmetry inside the material, it can be ‘inserted’ into other materials, such as classical semiconductor materials used in electronic devices. This research investigates the possibility to fabricate honeycomb semiconductors: semiconductor materials with a honeycomb nano geometry, implementing the graphene-like electrical properties into the electronic structure of a two-dimensional semiconductor material. The honeycomb semiconductors are fabricated using lithography, creating a hexagonal array of pores into the two-dimensional semiconductor. Since this technique is widely used in the semiconductor industry, direct application into electrical devices is a possibility. This thesis describes the design, fabrication, and the electronical characterization of a honeycomb semiconductor, and discusses the obtained results using a theoretical ‘muffin-tin’ model. This research shows a prospect to creating designer materials: materials in which scientist have full control over it’s (electrical) properties by using different materials, different symmetries and/or different dimensions.

Country
Netherlands
Related Organizations
Keywords

honeycomb semiconductors, lithography, scanning tunneling microscopy, lithography, scanning tunneling microscopy, honeycomb semiconductors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities