Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Constructive Mathema...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Constructive Mathematical Analysis
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Halpern-type relaxed algorithms with alternated and multi-step inertia for split feasibility problems with applications in classification problems

Halpern-type relaxed algorithms with alternated and multi-step inertia for split feasibility problems with applications in classification problems
Authors: Abdulwahab Ahmad; Poom Kumam; Yeolb Je Cho; Kanokwan Sıtthıthakerngkıet;

Halpern-type relaxed algorithms with alternated and multi-step inertia for split feasibility problems with applications in classification problems

Abstract

In this article, we construct two Halpern-type relaxed algorithms with alternated and multi-step inertial extrapolation steps for split feasibility problems in infinite-dimensional Hilbert spaces. The first is the most general inertial method that employs three inertial steps in a single algorithm, one of which is an alternated inertial step, while the others are multi-step inertial steps, representing the recent improvements over the classical inertial step. Besides the inertial steps, the second algorithm uses a three-term conjugate gradient-like direction, which accelerates the sequence of iterates toward a solution of the problem. In proving the convergence of the second algorithm, we dispense with some of the restrictive assumptions in some conjugate gradient-like methods. Both algorithms employ a self-adaptive and monotonic step-length criterion that does not require knowledge of the norm of the underlying operator or the use of any line search procedure. Moreover, we formulate and prove some strong convergence theorems for each of the algorithms based on the convergence theorem of an alternated inertial Halpern-type relaxed algorithm with perturbations in real Hilbert spaces. Further, we analyse their applications to classification problems for some real-world datasets based on the extreme learning machine (ELM) with the $\ell_{1}$-regularization approach (that is, the Lasso model) and the $\ell_{1}-\ell_{2}$ hybrid regularization approach. Furthermore, we investigate their performance in solving a constrained minimization problem in infinite-dimensional Hilbert spaces. Finally, the numerical results of all experiments show that our proposed methods are robust, computationally efficient and achieve better generalization performance and stability than some existing algorithms in the literature.

Keywords

Convex programming, relaxed \(\mathcal{CQ}\) method, Relaxed CQ method;Alternated inertial method;Multi-step inertial method;Conjugate gradient method;Split feasibility problem;Classification problem, alternated inertial method, classification problem, Sayısal ve Hesaplamalı Matematik (Diğer), multi-step inertial method, split feasibility problem, Iterative procedures involving nonlinear operators, Variational methods involving nonlinear operators, Variational and other types of inequalities involving nonlinear operators (general), Numerical and Computational Mathematics (Other), conjugate gradient method, Temel Matematik (Diğer), Pure Mathematics (Other), Monotone operators and generalizations, Numerical methods for variational inequalities and related problems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold