
In aspect-based sentiment analysis, tasks are diverse and consist of aspect term extraction, aspect categorization, opinion term extraction, sentiment polarity classification, and relation extractions of aspect and opinion terms. These tasks are generally carried out sequentially using more than one model. However, this approach is inefficient and likely to reduce the model’s performance due to cumulative errors in previous processes. The co-extraction approach with Dual crOss-sharEd RNN (DOER) and span-based multitask acquired better performance than the pipelined approaches in English review data. Therefore, this research focuses on adapting the co-extraction approach where the extraction of aspect terms, opinion terms, and sentiment polarity are conducted simultaneously from review texts. The co-extraction approach was adapted by modifying the original frameworks to perform unhandled subtask to get the opinion triplet. Furthermore, the output layer on these frameworks was modified and trained using a collection of Indonesian-language hotel reviews. The adaptation was conducted by testing the output layer topology for aspect and opinion term extraction as well as variations in the type of recurrent neural network cells and model hyperparameters used, and then analysing the results to obtain a conclusion. The two proposed frameworks were able to carry out opinion triplet extraction and achieve decent performance. The DOER framework achieves better performance than the baselines on aspect and opinion term extraction tasks.
Information technology, T58.5-58.64, TK Electrical engineering. Electronics Nuclear engineering
Information technology, T58.5-58.64, TK Electrical engineering. Electronics Nuclear engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
