
doi: 10.32614/rj-2016-058
The definition of a distance measure between time series is crucial for many time series data mining tasks, such as clustering and classification. For this reason, a vast portfolio of time series distance measures has been published in the past few years. In this paper, the TSdist package is presented, a complete tool which provides a unified framework to calculate the largest variety of time series dissimilarity measures available in R at the moment, to the best of our knowledge. The package implements some popular distance measures which were not previously available in R, and moreover, it also provides wrappers for measures already included in other R packages. Additionally, the application of these distance measures to clustering and classification tasks is also supported in TSdist, directly enabling the evaluation and comparison of their performance within these two frameworks.
Programming Languages and Compilers, 330, Computer Sciences, Numerical Analysis and Scientific Computing, 004
Programming Languages and Compilers, 330, Computer Sciences, Numerical Analysis and Scientific Computing, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
