Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Missou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://mospace.umsystem.edu/x...
Doctoral thesis
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.32469/10355...
Doctoral thesis . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fusion frame constructions and frame partitions

Authors: Peterson, Jesse D.;

Fusion frame constructions and frame partitions

Abstract

Fusion frames consist of a sequence of subspaces from a Hilbert space and corresponding positive weights so that the sum of weighted orthogonal projections onto these subspaces is an invertible operator on the space. Despite extensive literature on fusion frames, and several construction methods for unit-weight fusion frames with prescribed subspace dimensions and fusion frame operator spectra, there do not exist such constructions for prescribed non-unit weights. There are also very few constructions which allow one to control geometric properties among the subspaces. First we will adapt a flexible construction technique known as spectral tetris to provide the first constructions of the most general classes of fusion frames: fusion frames with arbitrary non-unit weights. Moreover, we provide for the first time necessary and sufficient conditions for when a fusion frame can be constructed via spectral tetris methods. Then we present a new alternative construction leveraging Naimark complements to build a large class of fusion frames whose principal angles between any two subspaces are constant. Changing focus to frame partitions, the celebrated Rado-Horn theorem is an often-applied tool which provides a tight bound on the minimal number of linearly indpendent sets in a partition of vectors. This theorem has been rediscovered many times over, but no existing results describe how to find such partitions. We present an alternative proof of the Rado-Horn theorem and then adapt our proof's ideas to capture much more spanning and independence information compared with existing Rado-Horn results. We further describe how to build partitions with these properties.

Related Organizations
Keywords

spectral tetris, geometric properties, Rado-Horn theorem, fusion frames, 510, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green