Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear bearing device as a solution for optical navigation of fine needle procedures

Authors: Stüber, Volker; Al-Afif, Shadi; Suero, Eduardo; Hüfner, Tobias; Wiewiorski, Martin; Krettek, Christian; Citak, Musa;

Linear bearing device as a solution for optical navigation of fine needle procedures

Abstract

Background: Optical navigation of needles < 1 mm diameter remains a challenging task. Bending of these tools is the limiting factor. Objective: To use a conventional optical navigation system for interventional fine needle procedures. Materials and methods: A novel custom-made device was constructed to guide the needle in the direction of the planned trajectory. Accuracy of this device was analyzed with two setups (A = ballistic gelatin; B = used pork meat). For both setups, a Plexiglas cube with integrated Plexiglas reference arrays was used. Metal targets of 1 mm diameter were placed in the center. Images were acquired using a 3D fluoroscope connected to a conventional optical navigation system. After trajectory planning, ten navigated injections were performed freehand and with the linear bearing device for each setup. A 3D scan was performed to measure the distance between contrast medium and metal target after each injection. Results: Freehand navigation with a needle of 0.9 mm in diameter was not accurate with either setup (Setup A: mean 33.4 mm; range, 3-63 mm; Setup B: mean 40.1 mm; range, 12-75 mm). Linear bearing navigation was significant more precisely (Setup A: mean 0.7 mm; range, 0-0.75 mm; Setup B: mean 0.29 mm, range 0-1.3 mm) than freehand navigation. Conclusion: The linear bearing device reduced all bending. Optical fine needle navigation was accomplished with precision comparable to electromagnetic navigation. This device may provide useful for minimally-invasive clinical applications. Follow-up studies should compare electromagnetic and optical navigation systems in the same setup.

Keywords

Surgery, Computer-Assisted, Needles, Fluoroscopy, Humans, Tomography, X-Ray Computed

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!