
doi: 10.3233/jifs-201016
Up to now, there have been a lot of research results about multi-attribute decision making problems by fuzzy graph theory. However, there are few investigations about multi-attribute decision making problems under the background of indecisiveness. The main reason is that the difference of cognition and the complexity of thinking by decision makers, for the same question have different opinions. In this paper, we proposed a hesitant fuzzy hypergraph model based on hesitant fuzzy sets and fuzzy hypergraphs. At the same time, some basic graph operations of hesitant fuzzy hypergraphs are investigated and several equivalence relationship between hesitant fuzzy hypergraphs, hesitant fuzzy formal concept analysis and hesitant fuzzy information systems are discussed. Since granular computing can deal with multi-attribute decision-making problems well, we considered the hesitant fuzzy hypergraph model of granular computing, and established an algorithm of multi-attribute decision-making problem based on hesitant fuzzy hypergraph model. Finally an example is given to illustrate the effectiveness of the algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
