
doi: 10.3233/jcs-210133
handle: 10278/5020963
Machine learning has proved invaluable for a range of different tasks, yet it also proved vulnerable to evasion attacks, i.e., maliciously crafted perturbations of inputs designed to force mispredictions. In this article we propose a novel technique to certify the security of machine learning models against evasion attacks with respect to an expressive threat model, where the attacker can be represented by an arbitrary imperative program. Our approach is based on a transformation of the model under attack into an equivalent imperative program, which is then analyzed using the traditional abstract interpretation framework. This solution is sound, efficient and general enough to be applied to a range of different models, including decision trees, logistic regression and neural networks. Our experiments on publicly available datasets show that our technique yields only a minimal number of false positives and scales up to cases which are intractable for a competitor approach.
Adversarial machine learning; abstract interpretation; evasion attacks; security certification
Adversarial machine learning; abstract interpretation; evasion attacks; security certification
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
