
doi: 10.3233/isb-00134
pmid: 15724281
Mathematical modeling is a powerful approach for understanding the complexity of biological systems. Recently, several successful attempts have been made for simulating complex biological processes like metabolic pathways, gene regulatory networks and cell signaling pathways. The pathway models have not only generated experimentally verifiable hypothesis but have also provided valuable insights into the behavior of complex biological systems. Many recent studies have confirmed the phenotypic variability of organisms to an inherent stochasticity that operates at a basal level of gene expression. Due to this reason, development of novel mathematical representations and simulations algorithms are critical for successful modeling efforts in biological systems. The key is to find a biologically relevant representation for each representation. Although mathematically rigorous and physically consistent, stochastic algorithms are computationally expensive, they have been successfully used to model probabilistic events in the cell. This paper offers an overview of various mathematical and computational approaches for modeling stochastic phenomena in cellular systems.
Stochastic Processes, Gene Expression Regulation, Models, Biological, Algorithms, Signal Transduction
Stochastic Processes, Gene Expression Regulation, Models, Biological, Algorithms, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
