Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Feature Selection for Classification

Authors: Dash, M.; Liu, H.;

Feature Selection for Classification

Abstract

Feature selection has been the focus of interest for quite some time and much work has been done. With the creation of huge databases and the consequent requirements for good machine learning techniques, new problems arise and novel approaches to feature selection are in demand. This survey is a comprehensive overview of many existing methods from the 1970's to the present. It identifies four steps of a typical feature selection method, and categorizes the different existing methods in terms of generation procedures and evaluation functions, and reveals hitherto unattempted combinations of generation procedures and evaluation functions. Representative methods are chosen from each category for detailed explanation and discussion via example. Benchmark datasets with different characteristics are used for comparative study. The strengths and weaknesses of different methods are explained. Guidelines for applying feature selection methods are given based on data types and domain characteristics. This survey identifies the future research areas in feature selection, introduces newcomers to this field, and paves the way for practitioners who search for suitable methods for solving domain-specific real-world applications.

Keywords

Feature selection, Framework, Classification

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.01%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2K
Top 0.01%
Top 0.01%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!