
doi: 10.3233/fi-2019-1777
We generalize the well-known correspondence between partitions and equivalence relations on a set to the case of graphs and hypergraphs. This is motivated by the role that partitions and equivalence relations play in Rough Set Theory and the results provide some of the foundations needed to develop a theory of rough graphs. We use one notion of a partition of a hypergraph, which we call a graphical partition, and we show how these structures correspond to relations on a hypergraph having additional properties. In the case of a hypergraph with only nodes and no edges these properties are exactly the usual reflexivity, symmetry and transitivity properties required for equivalence relations on a set. We present definitions for upper and lower approximations of a subgraph with respect to a graphical partition. These generalize the well-known approximations in Rough Set Theory. We establish fundamental properties of our generalized approximations and provide examples of these constructions on some graphs.
Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), Graph theory (including graph drawing) in computer science, Hypergraphs, Fractional graph theory, fuzzy graph theory, Reasoning under uncertainty in the context of artificial intelligence
Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), Graph theory (including graph drawing) in computer science, Hypergraphs, Fractional graph theory, fuzzy graph theory, Reasoning under uncertainty in the context of artificial intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
