Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fundamenta Informati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
Fundamenta Informaticae
Article . 2018
Data sources: mEDRA
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minimum Cardinality Point-to-point Connectivity Augmentation Problem

Minimum cardinality point-to-point connectivity augmentation problem
Authors: Mehdy Roayaei; Mohammadreza Razzazi;

Minimum Cardinality Point-to-point Connectivity Augmentation Problem

Abstract

We consider an augmentation problem to establish point-to-point connectivity on unweighted graphs where there is no restriction on choosing the augmenting edges (arcs). Given a directed (an undirected) graph G and set P = {( si, ti) : 1 ≤ i ≤ m} of pairs of vertices in the graph, one has to find the minimum cardinality set of arcs (edges) to be added to the graph so that the resulting graph has (can be oriented in order to have) directed paths between the specified pairs of vertices. In the case of undirected graphs, an efficient polynomial-time algorithm is presented. In the case of directed graphs, we find that this problem is NP-hard. In addition, we show that it is fixed-parameter tractable with respect to the combined parameter the number of sink vertices and the number of source vertices of a graph, however, it is W[1]-hard with respect to both parameters the number of new edges and the number of input pairs.

Related Organizations
Keywords

Connectivity, point-to-point connectivity, strong-connectivity, Graph algorithms (graph-theoretic aspects), graph augmentation, Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.), bridge-connectivity, FPT-algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!