
arXiv: 2408.13493
Lexicographic multi-objective problems, which impose a lexicographic importance order over the objectives, arise in many real-life scenarios. Existing Reinforcement Learning work directly addressing lexicographic tasks has been scarce. The few proposed approaches were all noted to be heuristics without theoretical guarantees as the Bellman equation is not applicable to them. Additionally, the practical applicability of these prior approaches also suffers from various issues such as not being able to reach the goal state. While some of these issues have been known before, in this work we investigate further shortcomings and propose fixes for improving practical performance in many cases. We also present a policy optimization approach using our Lexicographic Projection Algorithm (LPA) that has the potential to address these theoretical and practical concerns. Finally, we demonstrate our proposed algorithms on benchmark problems.
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
