Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.3233/faia22...
Part of book or chapter of book . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mEDRA
Part of book or chapter of book . 2022
Data sources: mEDRA
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Rule-PSAT: Relaxing Rule Constraints in Probabilistic Assumption-Based Argumentation

Authors: Xiuyi Fan;

Rule-PSAT: Relaxing Rule Constraints in Probabilistic Assumption-Based Argumentation

Abstract

Probabilistic rules are at the core of probabilistic structured argumentation. With a language L, probabilistic rules describe conditional probabilities Pr(σ0|σ1,…,σk) of deducing some sentences σ0∈L from others σ1,…,σk∈L by means of prescribing rules σ0←σ1,…,σk with head σ0 and body σ1,…,σk. In Probabilistic Assumption-based Argumentation (PABA), a few constraints are imposed on the form of probabilistic rules. Namely, (1) probabilistic rules in a PABA framework must be acyclic, and (2) if two rules have the same head, then the body of one rule must be the subset of the other. In this work, we show that both constraints can be relaxed by introducing the concept of Rule Probabilistic Satisfiability (Rule-PSAT) and solving the underlying joint probability distribution on all sentences in L. A linear programming approach is presented for solving Rule-PSAT and computing sentence probabilities from joint probability distributions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average