Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the three-point flexural tests of dental polymeric resins

Authors: Arnaldo G. Zuccari; Yoshiki Oshida;

On the three-point flexural tests of dental polymeric resins

Abstract

Currently acrylic resins are commonly employed in many medical applications, especially for the fabrication of long span provisional restorations in dentistry and bone cement in orthopedics. On of the major problems associated with the conventional type of acrylic resins is their unsatisfactory mechanical properties. Among many attempts to strengthen acrylic resins, it has been demonstrated that they can be strengthened through the addition of reinforcement(s) as structural components of different size, shape and chemical composition, dispersed in the acrylic matrix, thus forming a composite structure. In the course of studies to strengthen dental polymeric resins by admixing various metallic oxide particles, PMMA-, PEMA-, and PIMA-based resins were reinforced by 2 vol.% added alumina, magnesia, zirconia, and silica powders. It was found that PMMA admixed with 2 vol.% zirconia exhibited the best improvement of mechanical properties (breaking strength, modulus of elasticity, offset yield strength, and fracture toughness as well). All tests were conducted under three-point bending. It was also found that the breaking strength based on the original sample dimension was, at most 20% less than those based on the final sample dimension. Moreover, this discrepancy was independent of the type of tested material, but dependent on the sample's modulus of elasticity.

Keywords

Analysis of Variance, Polymers, Elasticity, Resins, Synthetic, Materials Testing, Stress, Mechanical, Particle Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!