
handle: 11311/1063000
In the last two decades, visual image techniques such as Digital Image Correlation (DIC) enabled to experimentally determine the crack tip displacement and strain fields at small scales. The displacements are tracked during loading, and parameters as the Stress Intensity Factor (SIF), opening and closing loads, T-stress can be readily measured. In particular, the SIFs and the T-stress can be obtained by fitting the analytical equation of the Williamstype expansion with the experimentally-determined displacement fields. The results in terms of fracture mechanics parameters strictly depend on the dimension of the area considered around the crack tip in conjunction with the crack length, the maximum SIF (and thus the plastic tip radius), and the number of terms to be considered in the Williams-type expansion. This work focuses in understanding the accuracy of the SIF calculation based on these factors. The study is based on Finite Element Analysis simulations where purely elastic material behavior is considered. The accuracy of the estimation of the SIF is investigated and a guide-line is provided to properly set the DIC measurements. The analysis is then experimentally validated for crack closure measurements adopting the SENT specimen geometry.
Crack-tip displacement fields; Digital image correlation; Stress intensity factor; Mechanics of Materials; Mechanical Engineering, Structural engineering (General), Digital image correlation, TJ1-1570, TA630-695, Mechanical engineering and machinery, Crack-tip displacement fields, Stress intensity factor
Crack-tip displacement fields; Digital image correlation; Stress intensity factor; Mechanics of Materials; Mechanical Engineering, Structural engineering (General), Digital image correlation, TJ1-1570, TA630-695, Mechanical engineering and machinery, Crack-tip displacement fields, Stress intensity factor
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
