
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The structure of a tendon is an important example of complexity of ECM three-dimensional organization. The extracellular matrix (ECM) is a macromolecular network with both structural and regulatory functions. ECM components belong to four major types of macromolecules: the collagens, elastin, proteoglycans, and noncollagenous glycoproteins. Tendons are made by a fibrous, compact connective tissue that connect muscle to bone designed to transmit forces and withstand tension during muscle contraction. Here we show the ultrastructural features of tendon's components.
616.7 Malattie del sistema muscoloscheletrico, collagen, tendon, Settore MED/04 - PATOLOGIA GENERALE, extra-cellular matrix, extra-cellular matrix; ultrastructure; collagen; tendon, ultrastructure; extracellular matrix; collagen; tendon, ultrastructure
616.7 Malattie del sistema muscoloscheletrico, collagen, tendon, Settore MED/04 - PATOLOGIA GENERALE, extra-cellular matrix, extra-cellular matrix; ultrastructure; collagen; tendon, ultrastructure; extracellular matrix; collagen; tendon, ultrastructure
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
