Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Emerging Infectious ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Emerging Infectious Diseases
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Emerging Infectious Diseases
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Emerging Infectious Diseases
Article . 2010
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a Rotavirus G12 Strain, Indonesia

Authors: Kiki M.K. Samsi; Matthew R. Kasper; Shannon D. Putnam; Magdarina D. Agtini; Wahyu N. Wulan; Erlin Listiyaningsih;

Identification of a Rotavirus G12 Strain, Indonesia

Abstract

To the Editor: Group A rotaviruses are the most common etiologic agents of acute gastroenteritis in infants and young children, each year resulting in ≈100 million diarrhea episodes and 600,000 deaths worldwide (1). The genome of rotavirus comprises 11 segments of double-stranded RNA, which encode 6 structural viral proteins (VPs) and 6 nonstructural proteins (NSPs). Recent scientific reports have identified novel rotavirus strains, such as G12 (2–5), which were first described in 1987 among Filipino children with diarrhea (6). In Indonesia, a rotavirus study showed that a broad variety of VP7 types (G1, G2, G3, G4, G8, G9) and VP4 types (P[4], P[6], P[8], P[9], P[10], P[11]), especially G9 and P[8] and G9P[8], were the genotype combinations most frequently encountered (7). From 2005 through 2008, we conducted a nationwide surveillance study among children who had diarrhea to determine etiologies among Indonesian children seeking health services for diarrhea at hospitals and health clinics. Patients were enrolled after obtaining consent from parents/guardians of those eligible in accordance with an institutional review board protocol approved by the US Naval Medical Research Unit No. 2 (NAMRU-2) and the Ethical Committee of the Indonesian National Health Research and Development Institute. Stool specimens and clinical enrollment data were collected for each eligible patient, and all collected items were transported to NAMRU-2 in Jakarta, Indonesia. In December 2007, a stool specimen was collected from a 14-day-old afebrile infant brought to Sumber Waras Hospital in West Jakarta with diarrhea, vomiting, moderate dehydration, and malnutrition. This patient was infected with the rotavirus G12 strain, was hospitalized for 6 days, and was discharged after recovering fully. Bacterial cultures and ova/parasite evaluations were negative for enteric pathogens. Rotavirus was detected in this specimen and genotyped by multiplex, seminested reverse transcription–PCR (RT-PCR) targeting the VP4 and VP7 genes (8,9). The specimen was typed as P[4]P[6] but was G-nontypeable. Primers to detect G12 were then used for RT-PCR and identified the proper G12 amplicon size (2,3). By use of published primers (9), sequencing of the VP7 gene segment confirmed the presumptive G12 genotype. Sequencing reactions were performed by using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) on the Applied Biosystems 3130xl sequencer. Sequence analysis was done by using Sequencher 4.8 version (Gene Codes Corporation, Inc., Ann Arbor, MI, USA). Nucleotide sequences were submitted to GenBank for a BLASTN search (http://blast.ncbi.nlm.nih.gov) on the National Center for Biological Information website. We then created alignments of nucleotides and deduced amino acid sequences and compared them with a selection of reference strains from the GenBank database. Genetic relationships among G12 were determined by using PAUP version 4.0 beta 10 software (http://paup.csit.fsu.edu). A phylogenetic tree was constructed on the basis of nucleotides 1–971 of the VP7 gene by using the neighbor-joining method and applying the Kimura 2-parameter method with 1,000 bootstrap replicates of the neighbor-joining model. The BLASTN search of the VP7 989 nucleotide sequence of the putative G12 Indonesian rotavirus (Indo SWJ0806) showed 98% similarity with published VP7 sequences of rotavirus G12 strains from Japan (CP727; GenBank accession no.{"type":"entrez-nucleotide","attrs":{"text":"AB125852","term_id":"49065032","term_text":"AB125852"}}AB125852), Argentina (Arg721; GenBank accession no. {"type":"entrez-nucleotide","attrs":{"text":"EU496255","term_id":"169835103","term_text":"EU496255"}}EU496255), and Thailand (T152; GenBank accession no. {"type":"entrez-nucleotide","attrs":{"text":"AB071404","term_id":"19912798","term_text":"AB071404"}}AB071404). The Indonesia G12 clustered into the lineage II composed of rotavirus G12 reference strains from Japan, Argentina, South Korea, and Thailand (Figure). Lineage II is a minority cluster when compared with lineage III, which consists of rotavirus G12 from the United States (US6588, Se585), Saudi Arabia (MD844), India (13B2), Bangladesh (RV161), and other Thailand strains (MS051) (4). The nucleotide sequence divergence between lineage II and lineage III ranges from 2.6% to 3.2%. Analysis of the deduced amino acid sequence alignment on the neutralization epitopes that code for the antigenic regions A, B, and C show high conservation of the most immunodominant sites (data not shown). Antigenic regions A, B, C, D, E, and F of Indonesia SWJ0806 show 100% amino acid similarity to Japan G12 strains; K12 and CP727 (9). The amino acid residue at position 142 of the antigenic region B has characterized lineage I and II (Val) and lineage III (Leu). Figure Phylogenetic analysis of the viral protein (VP) 7 genotype G12 rotavirus of Indonesia with reference strains downloaded from GenBank. The GenBank accession numbers of each strain appear next to the strain. The multiple alignment was constructed by using ... Phylogenetic analysis showed that the virus clusters into lineage II and that the deduced amino acid sequence is highly conserved compared with other reported rotavirus G12 strains identified. The combination of the P[6] genotype in this rotavirus strain suggests the possibility of a zoonotic transmission (10). Continued surveillance for rotavirus is an essential component of a country’s public health infrastructure and diarrhea prevention programs. Rotavirus genotyping from the data obtained provides necessary information for vaccine development and identification of novel and emerging rotavirus strains.

Keywords

Rotavirus, Reverse Transcriptase Polymerase Chain Reaction, diarrhea, R, Infant, Newborn, Infectious and parasitic diseases, RC109-216, Rotavirus Infections, rotavirus, children, Indonesia, Sequence Homology, Nucleic Acid, Medicine, Humans, viruses, G12, Letters to the Editor, Child, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Green
gold