Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Biology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Biology and Medicine
Article . 2007 . Peer-reviewed
License: SAGE TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Macrophage Iron, Hepcidin, and Atherosclerotic Plaque Stability

Authors: Sullivan, Jerome L.;

Macrophage Iron, Hepcidin, and Atherosclerotic Plaque Stability

Abstract

Hepcidin has emerged as the key hormone in the regulation of iron balance and recycling. Elevated levels increase iron in macrophages and inhibit gastrointestinal iron uptake. The physiology of hepcidin suggests an additional mechanism by which iron depletion could protect against atherosclerotic lesion progression. Without hepcidin, macrophages retain less iron. Very low hepcidin levels occur in iron deficiency anemia and also in homozygous hemochromatosis. There is defective retention of iron in macrophages in hemochromatosis and also evidently no increase in atherosclerosis in this disorder. In normal subjects with intact hepcidin responses, atherosclerotic plaque has been reported to have roughly an order of magnitude higher iron concentration than that in healthy arterial wall. Hepcidin may promote plaque destabilization by preventing iron mobilization from macrophages within atherosclerotic lesions; the absence of this mobilization may result in increased cellular iron loads, lipid peroxidation, and progression to foam cells. Marked downregulation of hepcidin (e.g., by induction of iron deficiency anemia) could accelerate iron loss from intralesional macrophages. It is proposed that the minimally proatherogenic level of hepcidin is near the low levels associated with iron deficiency anemia or homozygous hemochromatosis. Induced iron deficiency anemia intensely mobilizes macrophage iron throughout the body to support erythropoiesis. Macrophage iron in the interior of atherosclerotic plaques is not exempt from this process. Decreases in both intralesional iron and lesion size by systemic iron reduction have been shown in animal studies. It remains to be confirmed in humans that a period of systemic iron depletion can decrease lesion size and increase lesion stability as demonstrated in animal studies. The proposed effects of hepcidin and iron in plaque progression offer an explanation of the paradox of no increase in atherosclerosis in patients with hemochromatosis despite a key role of iron in atherogenesis in normal subjects.

Country
United States
Related Organizations
Keywords

Anemia, Iron-Deficiency, Macrophage, Iron, Peptide Hormones, Hepcidin, Down-Regulation, Arteries, Iron Deficiencies, Atherosclerosis, Hepcidins, Intestinal Absorption, Animals, Humans, Erythropoiesis, Hemochromatosis, Lipid Peroxidation, Antimicrobial Cationic Peptides, Foam Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 10%
gold