
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 4039441
The female Sprague-Dawley rat was evaluated as an animal model for the menstrual irregularities that are common in women athletes. Daily vaginal smears revealed that estrous cycles were markedly disrupted in rats during a 10-week exercise training program, while cycles remained normal in sedentary rats. Compared to 9 sedentary rats, the 10 exercise-trained rats had longer mean cycle lengths and fewer estrus smears. Six of the exercise-trained rats, but none of the sedentary rats, had an "anestrus period" with more than twice the normal interval between estrus smears; one exercise-trained rat became essentially acyclic. Weight gain during the 10-week training program was lower in exercise-trained rats than in sedentary rats. Colonic temperatures, monitored at rest and during 30 min of exercise, were slightly lower in exercise-trained rats with irregular estrous cycles than in exercise-trained rats with regular cycles, indicating that unusually elevated body temperatures during exercise are not responsible for exercise-related reproductive acyclicity. It is concluded that the female Sprague-Dawley rat may be a useful animal model for the study of menstrual irregularities associated with exercise training.
Vaginal Smears, Physical Education and Training, Body Weight, Physical Exertion, Rats, Inbred Strains, Diestrus, Anestrus, Body Temperature, Rats, Estrus, Pregnancy, Animals, Female
Vaginal Smears, Physical Education and Training, Body Weight, Physical Exertion, Rats, Inbred Strains, Diestrus, Anestrus, Body Temperature, Rats, Estrus, Pregnancy, Animals, Female
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
