Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Empirical Mode Decomposition–Autoregressive Integrated Moving Average

Hybrid Short-Term Traffic Speed Prediction Model
Authors: Haizhong Wang; Lu Liu; Zhen (Sean) Qian; Heng Wei; Shangjia Dong;

Empirical Mode Decomposition–Autoregressive Integrated Moving Average

Abstract

Short-term freeway traffic speed prediction is essential to improving mobility and roadway safety. It has been a challenging and unresolved issue. Traffic speed prediction can be applied to enhance the intelligent freeway traffic management and control for applications such as operational and regulation planning. For example, with more reliable traffic speed prediction, the advanced traveler information system can provide travelers with predictive travel time information and optimal routing, which allows them to arrange their schedules accordingly. Moreover, traffic managers can use the predicted information to deploy various traffic management strategies to increase system efficiency. In this paper, a hybrid empirical mode decomposition (EMD) and autoregressive integrated moving average (ARIMA) (or EMD-ARIMA) approach was developed to predict the short-term traffic speed on freeways. In general, there were three stages in the hybrid EMD-ARIMA forecasting framework. The first was the EMD stage, which decomposed the freeway traffic speed time series data into a number of intrinsic mode function (IMF) components and a residue. The second stage was to find the appropriate ARIMA model for each IMF and residue and then make predictions on the basis of the appropriate ARIMA model. The third stage was to combine the prediction results of each IMF and residue to make the predictions. The experimental results indicated that the proposed hybrid EMD-ARIMA framework was capable of predicting short-term freeway traffic speed with high accuracy.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!