
doi: 10.3141/2001-15
The NCHRP 1-37A Guide for Mechanistic-Empirical Design of New and Rehabilitated Design Structures introduces the dynamic modulus as the material property to characterize asphalt concrete. This is a significant change from the resilient modulus used in the previous AASHTO pavement design guide. This paper presents an analytical method of calculating the resilient modulus from the dynamic modulus. It involves the application of multiaxial linear viscoelastic theory to linear elastic solutions for the indirect tension test developed by Hondros. The prediction method is verified by using three 12.5-mm surface course mixtures with different aggregate shapes and binder types and one 25.0-mm base mixture. Results show that the predicted and measured resilient modulus values are in close agreement. The results provide a forward model for the potential back-calculation of the dynamic modulus from resilient modulus databases already available in highway agencies, such as the Long-Term Pavement Performance Materials Database.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
