
Abstract Three blades from 45,000 kW, 3,000 rpm turbine were received for examination, comprising the root of blade 28, blade 89 showing a crack in one of the root teeth, and blade 106 which was free from defects. Microscopic examination of the blade material showed it to be a ferritic stainless steel of the type commonly used for turbine blades. A number of non-metallic inclusions were present which had been drawn into threads in rolling; these appeared to consist largely of duplex silicates. The failure of blade 28 was the result of the development of a creeping crack. Magnetic crack examination of blade 89 revealed a crack in a tooth in an identical position to the start of the crack in blade 28 but on the opposite, i.e., steam inlet, side of the blade. Similar examination of blade 106 did not reveal any cracks. Cracking was associated with unsatisfactory bedding of the blade teeth on the faces of the wheel grooves. It was concluded that the blade failures were due primarily to over-loading of the individual blade teeth due to incorrect fitting in the wheel. Vibration was an important contributory factor, as it resulted in the imposition of fluctuating stresses on the overloaded teeth. Non-metallic inclusions in the blade material playing a minor part.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
