Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OSF Preprintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Topics in Cognitive Science
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://doi.org/10.31234/osf.i...
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Storytelling as Inverse Inverse Planning

Authors: Kartik Chandra; Tzu-Mao Li; Joshua Tenenbaum; Jonathan Ragan-Kelley;

Storytelling as Inverse Inverse Planning

Abstract

Great storytelling takes us on a journey the way ordinary reality rarely does. But what exactly do we mean by a "journey"? Recently, literary theorist Kukkonen (2014) proposed that storytelling is "probability design": the art of giving an audience pieces of information bit by bit, to craft the journey of their changing beliefs about the fictional world. A good "probability design" choreographs a delicate dance of certainty and surprise in the reader's mind as the story unfolds from beginning to end. In this paper, we computationally model this conception of storytelling. Building on the classic Bayesian inverse planning model of human social cognition, we treat storytelling as inverse inverse planning: the task of choosing actions to manipulate an inverse planner's inferences, and therefore a human audience's beliefs. First, we use an inverse inverse planner to depict social and physical situations, and present behavioral studies indicating that inverse inverse planning produces more expressive behavior than ordinary "naive planning." Then, through a series of examples, we demonstrate how inverse inverse planning captures many storytelling elements from first principles: character, narrative arcs, plot twists, irony, flashbacks, and deus ex machina are all naturally encoded in the flexible language of probability design. This paper reports on work to be presented at SIGGRAPH 2023 (Chandra, Li, Tenenbaum, & Ragan-Kelley, 2023).

Country
United States
Keywords

Narration, Computational Modeling, Cognitive Neuroscience, Communication, Theory of Mind, Cognitive Psychology, Bayes Theorem, Social and Behavioral Sciences, Social cognition, Bayesian modeling, Creativity, Humanities, Art and Cognition, Humans, Quantitative Methods, Neuroscience, Language

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid