Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.31224/osf.i...
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OSF Preprints
Preprint
Data sources: OSF Preprints
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Laser Physics Letters
Article . 2020 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
engrXiv
Preprint . 2020
Data sources: engrXiv
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computationally efficient model of OCT scan formation by focused beams and its usage to demonstrate a novel principle of OCTangiography

Authors: Zaitsev, Vladimir; Matveev, Lev; Matveyev, Alexander; Sovetsky, Alexander; Gelikonov, Grigory; Moiseev, Alexander;

Computationally efficient model of OCT scan formation by focused beams and its usage to demonstrate a novel principle of OCTangiography

Abstract

A computationally highly efficient full-wave model of OCT-scan formation by focused beams in spectral-domain optical coherence tomography (OCT) is presented. Similarly to some previous models, it is based on summation of fields scattered by discrete sub-resolution scatterers and enables accounting for axial and lateral inhomogeneity of the illuminating Gaussian beam. The main feature ensuring high computational efficiency of the described model is that instead of numerical integration of the scattered signal over the receiving aperture we apply analytical description of both the illuminating-beam focusing and collection of the scattered signals over the receiving aperture. Elimination of numerical integration over the receiving aperture has increased the computation speed by a factor of ~ 10^3. This is of key importance for practical feasibility of simulations of 3D OCT data volumes for large amounts (~ 10^5-10^7 ) of scatterers corresponding to realistic densities of cells in biological tissues. We demonstrate the model possibilities by simulating digital refocusing of strongly focused OCT beams in the presence moving scatterers. A novel principle of contrast-agent-free visualization of scatterer flows with velocities typical of blood microcirculation is demonstrated.

Related Organizations
Keywords

bepress|Engineering|Electrical and Computer Engineering|Signal Processing, engrXiv|Engineering|Electrical and Computer Engineering|Signal Processing, engrXiv|Engineering|Other Engineering, bepress|Engineering, Electrical and Computer Engineering, Engineering, engrXiv|Engineering, bepress|Engineering|Electrical and Computer Engineering, engrXiv|Engineering|Electrical and Computer Engineering, Signal Processing, bepress|Engineering|Other Engineering, Other Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
hybrid