Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://eartharxiv.or...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://eartharxiv.org/reposito...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.31223/x5x06...
Article . 2022 . Peer-reviewed
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What Determines the Future Ecological Risks of Wastewater Discharges in River Networks: Load, Location or Climate Change?

Authors: Soohyun Yang; Olaf Büttner; Rohini Kumar; Stefano Basso; Dietrich Borchardt;

What Determines the Future Ecological Risks of Wastewater Discharges in River Networks: Load, Location or Climate Change?

Abstract

Over the last decades, treatment of domestic wastewater promoted by environmental regulations have reduced human health risks and improved water quality. However, ecological risks caused by effluents of wastewater treatment plants (WWTPs) discharged into rivers still persist. Moreover, the evolution of these ecological risks in the future is intimately related to effects of changing climate, especially regarding streamflow in receiving rivers. Here, we present a systematic and transferable framework for assessing the ecological risks posed by individual WWTP-effluents at the catchment-scale. The framework combines the size-class k of WWTPs, which is a proxy for load, with the location of their outflows in river networks, represented by its stream-order ω. We identify ecological risks by using three proxy indicators: the urban discharge fraction and the local-scale concentrations of each total phosphorous and ammonium-nitrogen discharged from WWTPs. About 3,200 WWTPs over three large catchments (Rhine, Elbe, and Weser) in Central Europe were analyzed by incorporating simulated streamflow for the most extreme projected climate change scenario. We found that WWTPs causing ecological risks in future prevail in lower stream-orders, across almost all size-classes. Distinct patterns of ecological risks are identified in the k-ω framework for different indicators and catchments. We show that, as climate changes, intensified risks are especially expected in lower stream-orders receiving effluents of intermediate size WWTPs. We discuss implications of our findings for prioritizing WWTPs advancement and urging updates on environmental regulations. Further applications of the k-ω framework are discussed to help achieving global long-term commitments on freshwater security.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average