<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.3115/v1/w14-0605
We present a multilingual evaluation of approaches for spelling normalisation of historical text based on data from five languages: English, German, Hungarian, Icelandic, and Swedish. Three different normalisation methods are evaluated: a simplistic filtering model, a Levenshteinbased approach, and a character-based statistical machine translation approach. The evaluation shows that the machine translation approach often gives the best results, but also that all approaches improve over the baseline and that no single method works best for all languages.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |