
Named entity recognition (NER) is used in many domains beyond the newswire text that comprises current gold-standard corpora. Recent work has used Wikipedia's link structure to automatically generate near gold-standard annotations. Until now, these resources have only been evaluated on newswire corpora or themselves. We present the first NER evaluation on a Wikipedia gold standard (WG) corpus. Our analysis of cross-corpus performance on WG shows that Wikipedia text may be a harder NER domain than newswire. We find that an automatic annotation of Wikipedia has high agreement with WG and, when used as training data, outperforms newswire models by up to 7.7%.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
