
We present a novel approach to parse web search queries for the purpose of automatic tagging of the queries. We will define a set of probabilistic context-free rules, which generates bags (i.e. multi-sets) of words. Using this new type of rule in combination with the traditional probabilistic phrase structure rules, we define a hybrid grammar, which treats each search query as a bag of chunks (i.e. phrases). A hybrid probabilistic parser is used to parse the queries. In order to take contextual information into account, a discriminative model is used on top of the parser to re-rank the n-best parse trees generated by the parser. Experiments show that our approach outperforms a basic model, which is based on Conditional Random Fields.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
