
The Clinical E-Science Framework (CLEF) project has built a system to extract clinically significant information from the textual component of medical records, for clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. One part of this system is the identification of relationships between clinically important entities in the text. Typical approaches to relationship extraction in this domain have used full parses, domain-specific grammars, and large knowledge bases encoding domain knowledge. In other areas of biomedical NLP, statistical machine learning approaches are now routinely applied to relationship extraction. We report on the novel application of these statistical techniques to clinical relationships. We describe a supervised machine learning system, trained with a corpus of oncology narratives hand-annotated with clinically important relationships. Various shallow features are extracted from these texts, and used to train statistical classifiers. We compare the suitability of these features for clinical relationship extraction, how extraction varies between inter- and intra-sentential relationships, and examine the amount of training data needed to learn various relationships.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
