
handle: 10067/393130151162165141
We apply a memory-based learner to the CoNLL-2002 shared task: language-independent named entity recognition. We use three additional techniques for improving the base performance of the learner: cascading, feature selection and system combination. The overall system is trained with two types of features: words and substrings of words which are relevant for this particular task. It is tested on the two language pairs that were available for this shared task: Spanish and Dutch.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
