<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Context is used in many NLP systems as an indicator of a term's syntactic and semantic function. The accuracy of the system is dependent on the quality and quantity of contextual information available to describe each term. However, the quantity variable is no longer fixed by limited corpus resources. Given fixed training time and computational resources, it makes sense for systems to invest time in extracting high quality contextual information from a fixed corpus. However, with an effectively limitless quantity of text available, extraction rate and representation size need to be considered. We use thesaurus extraction with a range of context extracting tools to demonstrate the interaction between context quantity, time and size on a corpus of 300 million words.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |